



## **Outline of the Courses for Information Technology**

Summer semester

| Business Analysis (MA degree - 2 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Lecture                                | <ul> <li>Definition of basic concepts related to business analysis, its goals and the contexts in which it is used;</li> <li>Characteristics of basic knowledge areas, which include business analysis, review of techniques, methods and tools as well as required skills;</li> <li>Planning and monitoring of business analysis;</li> <li>Strategic analysis;</li> <li>Requirements extraction and cooperation with stakeholders;</li> <li>Requirements management life cycle - specification, modeling, analysis, verification, validation and communication of requirements.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Laboratory                             | <ul> <li>Presentation of the problem area for which analytical activities will be carried out;</li> <li>Planning business analysis - analytical activities in the context of project activities;</li> <li>Identifying stakeholders and defining the business need and vision of the solution;</li> <li>Business modeling - scope modeling, process map, business object modeling;</li> <li>Business process modeling - introduction to BPMN notation;</li> <li>Specification of requirements for the solution.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                        | Infrastructure of Electronic Services (MA degree - 1 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Lecture                                | <ul> <li>Electronic services - history and new trends;</li> <li>Trust in the field of electronic communication;</li> <li>Authentication mechanisms, PKI and its services;</li> <li>Models and mechanisms of trust, Certificates and their management;</li> <li>Cryptography - encryption algorithms and protocols</li> <li>Scaled computer networks;</li> <li>Computer systems virtualization;</li> <li>Data Centers;</li> <li>Electronic data flow monitoring.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                        | English Language (BA degree 6 ECTS, MA degree - 4 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Foreign language class                 | <ul> <li>Development of vocabulary resources in accordance with the obligatory textbook at a given level, including vocabulary in the field of learning and disciplines relevant to the field of study.</li> <li>Grammatical structures in accordance with the obligatory textbook at a given level.</li> <li>Practical understanding of the written text in accordance with the textbook at a given level, taking into account the field of learning and disciplines relevant to the field of study.</li> <li>Practice listening comprehension in accordance with the textbook at a given level.</li> <li>Developing the ability to prepare oral presentations in accordance with the textbook at a given level, taking into account the subject area of learning and disciplines relevant to the field of study.</li> <li>Development of writing skills in accordance with the textbook at a given level, taking into account the subject area of learning and disciplines relevant to the field of study.</li> </ul> |  |

| Team Management (MA degree - 1 ECTS)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E-learning                                          | <ul> <li>Values and strategy of a company;</li> <li>Management styles;</li> <li>Motivation and management techniques: supervising, coaching, mentoring and active listening;</li> <li>Change management and feedback;</li> <li>Charisma of a leader.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                     | Sociology (MA degree - 1 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| E-learning                                          | <ul> <li>Acquainting with the principles of functioning of basic institutions and social structures;</li> <li>Realizing the role of a human as a subject that constitutes the principles of the functioning of modern society.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Monographic Lecture (MA degree - 1 ECTS)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lecture                                             | <ul> <li>Stages of the control procedure;</li> <li>Risk analysis;</li> <li>Planning of inspections;</li> <li>Data sources;</li> <li>Inspection patterns and criteria;</li> <li>Control activities - document analysis, direct testing (questionnaires, visual inspections, interviews, etc.);</li> <li>Documenting the control results;</li> <li>Editing of audit results and their use;</li> <li>Collaboration with control institutions.</li> </ul>                                                                                                                                                                                                                                                                                                          |
| Algorithms and Data Structures (BA degree - 4 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lecture                                             | <ul> <li>Mathematical foundations of computational complexity of algorithms;</li> <li>Introduction to the design of algorithms;</li> <li>Construction and features of data structures: arrays, lists, queues, stacks, graphs;</li> <li>Methods of designing algorithms: recursion, divide-and-conquer method, dynamic programming, greedy method, return algorithms. Use of algorithms to solve problems;</li> <li>Estimating the computational complexity (time and memory) algorithms;</li> <li>Use of searching and sorting algorithms in data processing problems;</li> <li>Using of graph algorithms in transport problems;</li> <li>Design problems of concurrent algorithms.</li> </ul>                                                                 |
| Laboratory                                          | <ul> <li>Implementation of data structures: arrays, lists, queues, stacks and operations on these structures;</li> <li>Designing and implementing algorithms for sorting and searching for elements in known data structures. Estimating time and memory complexity of individual algorithms;</li> <li>Design and implementation of algorithms based on recursion, the divide and conquer method, dynamic programming and greedy algorithms. Estimating time and memory complexity of individual algorithms;</li> <li>Implementation of graphical representation of graphs and graph searching methods. Estimating time and memory complexity of individual algorithms;</li> <li>Advanced methods of operations on graphs and their implementation.</li> </ul> |

| Health Education in Lifestyle Diseases (BA degree - 0 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tutorial                                                    | <ul> <li>Legal regulations in the field of labour protection, including those concerning the rights and obligations of students and university employees.</li> <li>Ergonomics in organizing a safe learning position with a computer and other machines.</li> <li>Assessment of risks of factors harmful and burdensome to health, occurring in the processes of work and study, and methods of protection against hazards during the teaching classes.</li> <li>Psychological hints how to learn and organize work (Pareto law in learning, the effect of beginning and end - learning breaks, forgetting curve, the role of repetition, daily intellectual rhythm, conditions of effective mental work, breaking memory blocks.</li> <li>Rules of conduct in the case of accidents and in situations of danger (fire, breakdowns, etc.), including the rules of providing pre-medical assistance in case of an accident.</li> </ul> |
| Physics (BA degree - 4 ECTS)                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lecture                                                     | <ul> <li>Mathematical description of motion and its characteristics, types of motion;</li> <li>Newton's laws, conservation of energy, momentum and angular momentum;</li> <li>Periodic and harmonic motion, artificial Earth satellites, Solar System model;</li> <li>Electric field, Coulomb's law, electric field of point charges, dipoles;</li> <li>Electric current, Ohm's law, work and power of an electric current;</li> <li>Magnetic field and its interaction with electric charge, relation with electrical conductors;</li> <li>Electromagnetic induction, Faraday's law, mutual inductance, self-inductance;</li> <li>Alternating current circuits, RLC circuits, generation of electromagnetic waves;</li> <li>Electromagnetic waves and their spectra, selected applications.</li> </ul>                                                                                                                               |
| Laboratory                                                  | <ul> <li>Introduction to laboratory: preparing a report covering conducted experiment, measurement uncertainty analysis;</li> <li>Measurement of basic electric quantities (equivalent resistance by various methods, verification of Ohm's law);</li> <li>Measurement of refractive index of glass with the help of an optical spectrometer;</li> <li>Measurement of specific heat of water;</li> <li>Measurement of the speed of sound in air;</li> <li>Measurement of density of solids;</li> <li>Measurement of wavelength with the use of diffraction gratings.</li> </ul>                                                                                                                                                                                                                                                                                                                                                       |

п

| Mathematics (BA degree - 4 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                          | <ul> <li>Vectors. A linear independence of vectors. Bases;</li> <li>Matrix algebra;</li> <li>Determinants. The inverse of a matrix;</li> <li>Linear equations in linear algebra. Kronecker-Capelli theorem;</li> <li>Limit of a Function and Limit Laws;</li> <li>Derivative of a function and its interpretation;</li> <li>Application of derivatives. Extreme values of function. Monotonic functions. Concavity and curve sketching;</li> <li>Indefinite integral;</li> <li>Definite integral. Application of definite integrals;</li> <li>Functions of several variables. Partial Derivatives.</li> </ul>                                                                                        |
| Recitation class                 | <ul> <li>Linear combination of vectors. Linear independence of vectors. Bases;</li> <li>Matrix algebra;</li> <li>Determinants. Properties of determinants;</li> <li>The inverse of a matrix. Dimension and rank;</li> <li>Linear equations in linear algebra. Number of solutions to systems of linear equations;</li> <li>Limit of a Function and Limit Laws;</li> <li>Derivatives;</li> <li>Application of derivatives. Extreme values of function. Monotonic functions. Concavity and curve sketching;</li> <li>Indefinite integral;</li> <li>Definite integral. Application of definite integrals (area between curves);</li> <li>Partial derivatives of a function of two variables.</li> </ul> |
|                                  | Fundamentals of Statistics (BA degree - 3 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Lecture                          | <ul> <li>Random events and probability;</li> <li>Probability distributions of random variables and their parameters;</li> <li>Selected probabilistic models;</li> <li>Parametric description of the distribution in the population;</li> <li>Assessment of interacting variables in statistical processes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |
| Laboratory                       | <ul> <li>Probability distributions of random variables;</li> <li>Measures of location and scale parameters in the population;</li> <li>Asymmetry and kurtosis in the population;</li> <li>Assessment of the dependence of quantitative variables;</li> <li>Methods of describing the dependencies of qualitative variables.</li> </ul>                                                                                                                                                                                                                                                                                                                                                               |

| Programming (BA degree - 4 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                          | <ul> <li>Pointers - the role of pointers in the program;</li> <li>Memory management - dynamic memory allocation;</li> <li>Using pointers to work with arrays and to pass arguments to functions;</li> <li>References - using a reference to pass arguments to a function;</li> <li>Pointers to functions;</li> <li>Basic concepts of object oriented programming - class, object, encapsulation;</li> <li>Defining classes and creating objects in an object-oriented programming language, valuable and dynamic objects, structures;</li> <li>Class components - data fields, methods, constructors;</li> <li>Containers and algorithms in the STL library;</li> <li>Stages of the software development process - requirements specification, design, implementation, testing, implementation, cascade model.</li> </ul> |
| Laboratory                       | <ul> <li>Working with pointers;</li> <li>Dynamic memory allocation - dynamic one- and multidimensional arrays;</li> <li>Passing arguments to functions - passing by value, pointer, reference;</li> <li>Pointers to functions;</li> <li>Defining classes and creating objects, header files;</li> <li>Access modifiers, data fields, methods;</li> <li>Constructors, initialization list, overloading constructors and methods;</li> <li>Dynamic objects, arrays of objects;</li> <li>Fundamentals of working with containers and algorithms in the STL library;</li> <li>Fundamentals of working with the version control system, documenting the code with; documenting comments.</li> </ul>                                                                                                                            |
| Project                          | <ul> <li>Developing project specification;</li> <li>Program implementation;</li> <li>Presentation of the result.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  | Monitoring and Detecting Security Threats (MA degree - 4 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Laboratory                       | <ul> <li>Processing log data on Linux;</li> <li>Obtaining information about threats;</li> <li>Process monitoring in Windows and Linux;</li> <li>Log management systems;</li> <li>Interception of network traffic and monitoring for attacks;</li> <li>Testing the operation of the Snort tool;</li> <li>Isolation of threat actors with the use of monitoring and threat detection tools.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Project                          | <ul> <li>The project aims to plan a penetration test experiment in an isolated environment.</li> <li>Implementation stages:</li> <li>Establishing objectives and goals</li> <li>Planning a schedule of activities</li> <li>Preparation of a list of necessary resources</li> <li>Implementation of a virtual environment</li> <li>Implementation of the system under test</li> <li>Implementation of penetration testing tools</li> <li>Performing the test</li> <li>Data analysis and drawing conclusions</li> </ul>                                                                                                                                                                                                                                                                                                     |

| Cybersecurity Essentials (MA degree - 2 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                                       | <ul> <li>Cyberspace - security actors, cybercriminals, security professionals , impact of threats on individuals, business, institutions;</li> <li>Security models and standards. Basic components: confidentiality, integrity, availability;</li> <li>Threats and vulnerabilities - overview;</li> <li>Ensuring confidentiality - cryptography. Techniques, tools, protocols;</li> <li>Ensuring integrity. Integrity control methods, digital signatures, certificates. Integrity in databases;</li> <li>High availability and reliability. Methods for increasing reliability, incident response, disaster recovery;</li> <li>Securing devices and systems. Securing servers, networks. Physical security.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Laboratory                                    | <ul> <li>Identification of threats using professional bases. Preparing an environment based on virtualization;</li> <li>Applying methods of authentication, authorization and accounting in operating systems;</li> <li>Detecting basic threats in an operating system;</li> <li>Encryption and password cracking;</li> <li>Examining digital signatures. Configuring secure remote access;</li> <li>Securing the operating system.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                               | Introduction to Network Technologies (MA degree - 2 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Laboratory                                    | <ul> <li>Analysis of communication methods - connection / connectionless and their applications;</li> <li>Network services and the application, presentation and session layers of the OSI model;</li> <li>TCP and UDP protocol analysis. Assessment of the suitability of both protocols;</li> <li>Comparison of IPv4 and IPv6 protocols. Analysis of advantages and disadvantages of protocols;</li> <li>Study of data link layer protocols and multiple access methods on the example of Ethernet, wi-fi, ppp;</li> <li>Study of transmission paths and analysis of their properties;</li> <li>The use of remote access in business;</li> <li>Analysis of security solutions in different layers of the OSI model;</li> <li>Examination of protocols ensuring safe transmission;</li> <li>Computer network design methodology;</li> <li>Analysis of business requirements for a planned or modernized computer network;</li> <li>Formulating technical requirements for a computer network</li> <li>Planning of logical topology, addressing, selection of communication security solutions;</li> <li>Selection of network technology (Ethernet, Wi-Fi), devices and types of media. Designing the physical topology of the network and the deployment of cables and devices;</li> <li>Optimizing the operation of the computer network and services.</li> </ul> |
|                                               | Computer System Architecture (BA degree - 5 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lecture                                       | <ul> <li>Computer logic;</li> <li>Arithmetic of computers;</li> <li>Classic computer architecture;</li> <li>Processors. Command lists. Assembler language basics. Organization of computer on assembler language level;</li> <li>Hierarchy of memory in computer systems;</li> <li>Interfaces. Magistralls. External devices;</li> <li>Modern computer architectures. Multiprocessor architectures;</li> <li>Architectures and features of embedded systems. Microcontrollers. Microcontrollers programming;</li> <li>Reliability of computer systems.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Laboratory                                    | <ul> <li>Numerical systems, logic gates, design of combination systems;</li> <li>Implementation of assembler language programs for a PC;</li> <li>Implementation of assembler language programs for the microcontroller;</li> <li>Simulation and testing of the operation of a programmable logic controller (PLC).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| Databases (BA degree - 3 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lecture                        | <ul> <li>Introduction to the issue of databases. Information models. Data modelling. Database systems;</li> <li>A great database model - definition, structure and ownership. Relationship Algebra;</li> <li>Database query languages. Manipulating data with SQL queries. Extending SQL language with procedural programming mechanisms;</li> <li>Modeling conceptual and implementation diagrams in a relational model. Standardization of logical database schemas. Organization of files used for data storage. Indexing;</li> <li>Transactions - ownership, transaction diagrams, isolation, seriality, concurrency handling and management;</li> <li>Database management system: indexing (construction of dense and rare indices, tree structure B-), query optimization;</li> <li>Scattered databases and client-server architecture. Data warehouses. Non-relational databases</li> </ul>                                                                                                                                                                                                                                       |
| Laboratory                     | <ul> <li>Constructing simple and complex SQL queries. Verification of results;</li> <li>Instructions for manipulating data;</li> <li>Implementation of databases. Data import;</li> <li>T-SQL language. Declaring variables and constants. Overview of basic control structures of T SQL language;</li> <li>T-SQL Language: Triggers, stored procedures and functions, perspectives, cursors.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                | Software Engineering (BA degree - 5 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lecture                        | <ul> <li>Genesis, scope and goals of software engineering. The processes that determine the success of a software project;</li> <li>Requirements engineering and the process of capturing and formalizing business, functional, and non-functional level requirements, as well as system constraints, integration constraints, and business rules for the software being developed;</li> <li>Models for managing the phases of the software development process. Software development life cycle;</li> <li>Static validation and verification, and dynamic verification and validation in the IT product delivery process;</li> <li>Designing software architecture using UML notation;</li> <li>Use case, class, state and activity diagrams in relation to the "4+1" model perspectives;</li> <li>API documentation and the process of creating it;</li> <li>Automation of activities related to the software development process;</li> <li>Creational design patterns as a concept for solving repeatedly recurring problems;</li> <li>Structured design patterns as a solution concept for repeatedly recurring problems.</li> </ul> |
| Laboratory                     | <ul> <li>Methods of building module tests with the use of dedicated structural unit testing tools;</li> <li>Verification and validation of the produced software product;</li> <li>Requirements specification. Construction and modeling of software components with the use of use case diagram notation;</li> <li>Building and modeling of the software components using the class diagram notation;</li> <li>Building and modeling of the software components using the activity diagram notation;</li> <li>Building and modeling of the software components using the state diagram notation;</li> <li>Creating API code documentation;</li> <li>Creational design patterns and their implementation;</li> <li>Activity design patterns and their implementation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                         |
| Project                        | - Development of the SRS document, developing a project dictionary and checking its consistency with the requirements specification; developing a diagram of use cases; selection of the functional implementation module and building interaction; designing classes and interfaces for the indicated functionality; compilation and code implementation; building API documentation and module tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Programming Languages (BA degree - 7 ECTS) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory                                 | <ul> <li>Familiarization with selected environments, compilers and interpreters of programming languages;</li> <li>Elements of program design in imperative programming;</li> <li>Elements of the program design in structural programming;</li> <li>Elements of the program design in functional programming;</li> <li>Elements of program design in procedural programming;</li> <li>Elements of program design in event-driven programming;</li> <li>Elements of program design in declarative programming;</li> <li>Creating user applications - selected solutions for desktop technologies;</li> <li>Selected applications of programming languages - internet applications, data science, computer games.</li> </ul> |
| Project                                    | - The subject of the project is to create a small computer application in a chosen language and programming technology. The topic of the implemented application is determined individually with the teacher. The task will be divided into several stages: problem specification, program design, implementation and testing. The completed project must be presented by the realizing team on the group forum.                                                                                                                                                                                                                                                                                                            |
|                                            | Postproduction and Special Effects (BA degree - 8 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Laboratory                                 | <ul> <li>Performing advanced graphic compositions using materials prepared in-house, discussing the tools needed to complete the project. Idea creation;</li> <li>Realization of the project based on prepared materials in 2D raster graphics software, realization of the idea based on the tools learned;</li> <li>Preparation of film footage for composition with special effect. Idea creation;</li> <li>Preparation of a fragment of the film using early prepared materials, composition and advanced post-production functions in special effects software.</li> </ul>                                                                                                                                             |
| Project                                    | - Realization of own concept for the composition of a still or film image based on advanced graphic program functions learned during laboratory classes. Idea creation, material preparation, project realization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | Software Development Techniques (BA degree - 8 ECTS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Laboratory                                 | <ul> <li>Application development in selected architectures - development techniques and tools;</li> <li>Application of selected design patterns;</li> <li>Object-relational model for data access;</li> <li>Techniques of implementing business logic components;</li> <li>Mechanisms for maintaining the application status;</li> <li>Techniques of implementation of the presentation and distribution layer;</li> <li>Application integration techniques;</li> <li>Distribution, implementation and maintenance of applications.</li> </ul>                                                                                                                                                                              |
| Project                                    | <ul> <li>Determining the design assumptions of the application - requirements specification;</li> <li>Determining the application architecture and technologies used - preparing the application design;</li> <li>Implementation, launch and testing of applications, Post-development documentation (including instructions for installation / deployment);</li> <li>Application presentation.</li> </ul>                                                                                                                                                                                                                                                                                                                  |