

Outline of the Courses for Information Technology

Summer semester

Bachelor's degree	2
English Language	2
Algorithms and Data Structures	3
Physics	6
Mathematics	9
Fundamentals of statistics	12
Programming	14
Computer system Architecture	17
Databases	20
Software Engineering	23
Programming languages	27
Postproduction and special effects	
Software development techniques	32
Master's degree	34
Business analysis	34
Infrastructure and electronic services	
English Language	37
Team Management	
Sociology	40
Monographic lecture	42
Monitoring and detecting security threats	44
Cybersecurity essentials	46
Introduction to network technologies	47

Bachelor's degree

English Language

English Language (BA degree 6 ECTS)

Development of vocabulary resources in accordance with the obligatory textbook at a given level, including vocabulary in the field of learning and disciplines relevant to the field of study.
Grammatical structures in accordance with the obligatory textbook at a given level.
Practical understanding of the written text in accordance with the textbook at a given level, taking into account the field of learning and disciplines relevant to the field of study.
Practice listening comprehension in accordance with the textbook at a given level.
Developing the ability to prepare oral presentations in accordance with the textbook at a given level, taking into account the subject area of learning and disciplines relevant to the field of study.
Development of writing skills in accordance with the textbook at a given level, taking into account the subject area of learning and disciplines relevant to the field of study.

Algorithms and Data Structures

1. BASIC INFORMATION ON THE COURSE

Course name	Algorithms and Data Structures		
Beginning year	2022/2023		
Faculty	Applied Information Technology		
Field of study	Information Technology		
Education level	First-cycle studies – undergraduate		
Education profile	Practical		
Specialty			

2. PREREQUISITES (resulting from the sequence of courses)

Introduction to IT, Introduction to Programming, Fundamentals of mathematics

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course					
	After completing the training, the student has the following knowledge					
	Student can discuss, analyze and implement problems in the field of					
P_W01	mathematical and algorithmic knowledge necessary for the description, analysis					
	and operation of algorithms.					
	Can discuss, analyze and use issues in the field of basic algorithmic techniques					
P_W02	and the meaning of algorithmic and computational thinking in various areas of					
	human activity					
	After completing the training, the student has the following SKLILLS					
P_U01	Can construct algorithms using basic algorithmic techniques and various data					
P_001	structures.					
	Can assess the usefulness of algorithms and data structures, in particular graph					
P_U02	algorithms for solving simple engineering tasks, typical for real IT problems, and					
	select and apply appropriate methods.					
	Can estimate the time and memory complexity of the solution using a specific					
P_U03	algorithmic techniques and data structures.					

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
28	-	-	28	-	-	4

3.3 Teaching delivery methods

Forms of classes Delivery method	
Lecture Informative and problem-based lecture.	
Laboratory	Laboratory exercises at the computer. During the classes students analyze and implement algorithmic tasks typical for real problems encountered in professional practice of computer scientist.

3.4. Learning content (separately for each form of classes)

LECTURE

LLCTON					
No.	Learning content				
L1	Mathematical foundations of computational complexity of algorithms.				
L2	Introduction to the design of algorithms.				
L3	Construction and features of data structures: arrays, lists, queues, stacks, graphs.				
L4	Methods of designing algorithms: recursion, divide-and-conquer method, dynamic programming,				
L4	greedy method, return algorithms. Use of algorithms to solve problems.				
L5	Estimating the computational complexity (time and memory) algorithms.				
L6	Use of searching and sorting algorithms in data processing problems.				
L7	Using of graph algorithms in transport problems.				
L8	Design problems of concurrent algorithms.				
LABORA	ABORATORY				
No.	Learning content				

Lab1	Implementation of data structures: arrays, lists, queues, stacks and operations on these
Labi	structures.
Lab2	Designing and implementing algorithms for sorting and searching for elements in known data
Lauz	structures. Estimating time and memory complexity of individual algorithms.
	Design and implementation of algorithms based on recursion, the divide and conquer method,
Lab3	dynamic programming and greedy algorithms. Estimating time and memory complexity of
	individual algorithms.
Lab4	Implementation of graphical representation of graphs and graph searching methods. Estimating
Lau4	time and memory complexity of individual algorithms.
Lab5	Advanced methods of operations on graphs and their implementation.

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	Open question exam	Lecture
P_W02	Open question exam	Lecture
P_U01	practical task	Laboratory
P_U02	practical task	Laboratory
P_U03	practical task	Laboratory

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES For grade 2 For grade 3 For grade 4 For grade 5 Course outcome the student cannot the student can the student can the student can discuss, analyze or Discuss or analyze discuss and analyze discuss, analyze and interpret issues of issues of issues in the field of implement issues of mathematical mathematical mathematical mathematical P_W01 knowledge necessary knowledge necessary knowledge necessary knowledge necessary to describe and to describe and to describe and to describe and analyze algorithms. analyze algorithms. analyze algorithms. analyze algorithms. discuss, analyze or discuss or analyze discuss and analyze discuss, analyze and use issues related to issues related to issues related to use issues related to P_W02 basic algorithmic basic algorithmic basic algorithmic basic algorithmic techniques. techniques. techniques. techniques. design and design and design and implement simple implement complex implement complex design or implement search or sorting search or sorting search and sorting a simple search or algorithms for algorithms for algorithms for P_U01 sort algorithm for various data various data various data any data structure. structures using structures using structures using known techniques. known techniques. known techniques. choose, implement choose and choose implement choose and implement a basic and modify a basic and modify a implement any graph algorithm to graph algorithm to complex graph algorithm to solve a P_U02 solve a simple solve a simple algorithm to solve simple engineering engineering engineering an engineering problem, typical for problem, typical for problem, typical for problem typical for computer science. computer science. computer science. computer science. estimate the estimate the computational estimate the estimate the complexity of computational computational computational P_U03 different solutions to complexity of complexity of any IT complexity of simple the same IT problem complex IT problem. IT problems. and choose the problems. better one.

3.7. Literature

Obligatory literature
Shaffer, Clifford A, A practical introduction to data structures and algorithm analysis, Shaffer, Clifford A
2001
Johnsonbaugh, Richard , Schaefer, Marcus: Algorithms, Upper Saddle River, NJ : Pearson Education 2004.

Supplementary literature Dobrushkin, Vladimir A, Methods in algorithmic analysis, Boca Raton, Fla : Chapman & Hall/CRC 2010 Miller, Russ, Algorithms sequential and parallel : a unified approach, Upper Sadle River : Prentice Hall, 2000 Materials from the lecture.

Physics

1. BASIC INFORMATION ON THE COURSE

Course name	Physics	
Beginning year	2022/2023	
Faculty	Applied Information Technology	
Field of study	Information Technology	
Education level	First-cycle studies – undergraduate	
Education profile	Practical	
Specialty	-	

2. PREREQUISITES (RESULTING FROM THE SEQUENCE OF COURSES)

NONE

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course		
	After completing the training, the student has the following knowled	ge	
P_W01	The student can explain fundamental laws of physics		
P_W02	The student can describe basic phenomena present in electronic systems and components.		
P_W03	P_W03 The student can explain the laws of physics related to electromagnetic fields and waves.		
	5		
P_U01	The student can perform measurements with the help of an universal meter.		
P_U02	The student can describe measurement methods of basic physical quantities in the form of theoretical introduction to the report.		
P_U03	P_U03 The student can prepare a report concerning the performed experiment.		
	After completing the training, the student has the following social compe		
P_K01	The student can carry out the project according to the schedule, both individually and within a group.		

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
15	-	-	15	-	-	4

3.3 Teaching delivery methods

Forms of classes	Delivery method
Lecture	 Informative (conventional) lecture During the lectures, the instructor presents physical issues and laws along with examples of their application. The initial time of each lecture is designed to test the students' knowledge of memorization and understanding of the content provided in previous lectures.
Laboratory	Laboratory, experiment - "instructions to the laboratory" - Practical implementation of simple physical experiments - work in groups in the physics laboratory.

 Within the framework of each exercise, the so-called "instruction to the laboratory" is available for students, containing, among others: the topic of the exercise, a list of concepts and physical laws needed to understand the exercise being performed, a description of the next steps to be taken by students while performing the exercise, a bibliography. Students who complete a given exercise perform subsequent actions described in the instruction. In order for the work to run smoothly, students must be prepared for classes, for this purpose they should analyze the instruction before classes, understand the physical laws that they will use in the exercise. As part of each laboratory (exercise), students prepare (in the form of a short report): a) theoretical introduction to the given exercise b) a report on the exercise performed Students have a template of the theoretical introduction, as well as a template of the report.
report. - Theoretical introduction, report on the completed exercise, as well as the student's independent work (assessment method: observation) during the classes are subject to
the teacher's evaluation.

3.4. Learning content (separately for each form of classes)

LECTURE

No.	Learning content
L1	Mathematical description of motion and its characteristics, types of motion.
L2	Newton's laws, conservation of energy, momentum and angular momentum.
L3	Periodic and harmonic motion, artificial Earth satellites, Solar System model.
L4	Electric field, Coulomb's law, electric field of point charges, dipoles.
L5	Electric current, Ohm's law, work and power of an electric current.
L6	Magnetic field and its interaction with electric charge, relation with electrical conductors.
L7	Electromagnetic induction, Faraday's law, mutual inductance, self-inductance.
L8	Alternating current circuits, RLC circuits, generation of electromagnetic waves.
L9	Electromagnetic waves and their spectra, selected applications

LABORATORY

No.	Learning content
Lab1	Introduction to laboratory: preparing a report covering conducted experiment, measurement uncertainty analysis.
Lab2	Measurement of basic electric quantities (equivalent resistance by various methods, verification of Ohm's law).
Lab3	Measurement of refractive index of glass with the help of an optical spectrometer.
Lab4	Measurement of specific heat of water.
Lab5	Measurement of the speed of sound in air.
Lab6	Measurement of density of solids.
Lab7	Measurement of wavelength with the use of diffraction gratings.

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01 P_W02 P_W03	Test / exam – open questions	Lecture
P_U01	Observations / report	
P_U02	Report	Laboratory
P_K01	Observation / report	

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE OUTCOMES				
	For grade 2	For grade 3	For grade 4	For grade 5
Course outcome	the student cannot	e student cannot the student can the student can		the student can
P_W01 P_W03	explain laws of physics	explain laws of physics on examples chosen by the student	explain laws of physics on provided examples	explain laws of physics using advanced mathematical methods
P_W02	describe basic phenomena present in electronical components and systems	describe basic phenomena present in electronical components and systems on examples chosen by the student	describe basic phenomena present in electronical components and systems on provided examples	describe basic phenomena present in electronical components and systems using advanced mathematical methods
P_U01	measure basic quantities with the help of a universal meter	measure basic quantities with the help of a universal meter	measure electronic systems with the help of a universal meter	measure electronic systems with the help of a universal meter with providing measurement uncertainties
P_U02	prepare individually a theoretical introduction to the report, including the list of notions and laws of physics relevant to the exercise	prepare individually a theoretical introduction to the report, including the list of devices necessary to perform the exercise as well as the list of physical laws and phenomena that characterize the exercise	prepare individually a theoretical introduction to the report, describing physical phenomena and the working principles of devices used in the exercise, as well as providing a formula necessary to calculate the value of searched physical quantity with explanation of other quantities involved	prepare individually a theoretical introduction to the report, involving the working principles of devices used in the exercise based on appropriate laws of physics, as well as derivation of formulas necessary to calculate the values of physical searched quantities
Р_К01	Prepare a report containing results of performed measurements and values of searched physical quantities	Prepare a report containing results of performed measurements and values of searched physical quantities	Prepare a report containing results of performed measurements and values of searched physical quantities, as well as an information about the agreement of results with accepted literature data	Prepare a report containing results of performed measurements and values of searched physical quantities, as well as providing measurement uncertainties and an information about the agreement of results with accepted literature data

26 CRITERIA FOR CRADING THE LEVEL OF ACHIEVENENT OF COURSE OUTCOMES

3.7. Literature

Obligatory literature D. Halliday, R. Resnick, J. Walker, Fundamentals of Physics, Wiley, 2004. Narciso Garcia, Arthur Damask, Physics for computer science students : with emphasis on atomic and semiconductor physics, New York, 1986

K.A. Tsokos, *Physics for the IB Diploma*, New York, 2010

Supplementary literature

W. Heisenberg , Physics and philosophy : the revolution in modern science, N.Y, 1999

Mathematics

1. BASIC INFORMATION ON THE COURSE

Course name	Mathematics
Beginning year	2022/2023
Faculty	Applied Information Technology
Field of study	Information Technology
Education level	First-cycle studies – undergraduate
Education profile	Practical
Specialty	-

2. PREREQUISITES (resulting from the sequence of courses)

Fundamentals of mathematics

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course	Reference to learning outcomes for the field of study	
	After completing the training, the student has the following knowledge		
P_W01	Explain the basic concepts and methods of linear algebra	K \M/01	
P_W02	Explain the basic concepts and methods of calculus	K_W01	
	After completing the training, the student has the following SKLILLS		
P_U01	Perform operation on matrices.		
P_U02	Solve systems of linear equations.		
P_U03	Calculate the derivative of a function and use it to find the local extrema, monotonicity intervals and concavity.	K_U20	
P_U04	Calculate the indefinite and definite integrals and use the definite integral to calculate the areas of plane surfaces		
3.2. Forms of	classes and number of hours and ECTS credits		

Lec	Tutorial	RC	Lab	Р	eL	ECTS
16	-	18	-	-	-	4

3.3 Teaching delivery methods

Forms of classes	Delivery method		
Lecture	Informative and problematic lecture: The lecturer introduces the necessary concepts and discusses the issue. Suggesting to students the main problems, he discusses with them possible ways of solving tasks. He presents examples and tasks, which are considered and solved in cooperation with students.		
Recitation	Exercise - practical: The student constructs his own solution methods on the basis of previously acquired knowledge and skills. He indicates similarities and differences with methods used in other branches of mathematics. Moreover, he/she enriches his/her abilities by practicing the skills on the basis of knowledge acquired during lectures. In particular, uses indicated fragments of literature and own studies. Working in small groups, they exchange experience and learn to cooperate.		

3.4. Learning content (separately for each form of classes)

1 5 6	וודי	
LEC	.10	кг

LECTURE	
No.	Learning content
L1	Vectors. A linear independence of vectors. Bases
L2	Matrix algebra.
L3	Determinants. The inverse of a matrix.
L4	Linear equations in linear algebra. Kronecker-Capelli theorem.
L5	Limit of a Function and Limit Laws.
L6	Derivative of a function and its interpretation.
L7	Application of derivatives. Extreme values of function. Monotonic functions. Concavity and curve sketching.
L8	Indefinite integral.
L9	Definite integral. Application of definite integrals.
L10	Functions of several variables. Partial Derivatives.

RECITATION CLASS

No.	Learning content		
RC1	Linear combination of vectors. Linear independence of vectors. Bases.		
RC2	Matrix algebra.		
RC3	Determinants. Properties of determinants.		
RC4	The inverse of a matrix. Dimension and rank.		
RC5	Linear equations in linear algebra. Number of solutions to systems of linear equations.		
RC6	Limit of a Function and Limit Laws.		
RC7	Derivatives.		
RC8	Application of derivatives. Extreme values of function. Monotonic functions. Concavity and curve sketching.		
RC9	Indefinite integral.		
RC10	Definite integral. Application of definite integrals (area between curves).		
RC11	Partial derivatives of a function of two variables.		

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	test open questions	Lecture
P_W02	test open questions	Lecture
P_U01	test open questions	Recitation Class
P_U02	test open questions	Recitation Class
P_U03	test open questions	Recitation Class
P_U04	test open questions	Recitation Class

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course	For grade 2	For grade 3	For grade 4	For grade 5
outcome	the student cannot	the student can	the student can	the student can
P_W01	Select the correct answers in more than 50% of the questions in the field of linear algebra	Select the correct answers in more than 50% of the questions and less than 70% of the questions in the field of linear algebra	Select the correct answers in more than (or equal to) 70% of the questions and less than 85% of the questions in the field of linear algebra	Select the correct answers in more than (or equal to) 85% of the questions in the field of linear algebra
P_W02	Select the correct answers in more than 50% of the questions in the field of calculus	Select the correct answers in more than 50% of the questions and less than 70% of the questions in the field of calculus	Select the correct answers in more than (or equal to) 70% of the questions and less than 85% of the questions in the field of calculus	Select the correct answers in more than (or equal to) 85% of the questions in the field of calculus
P_U01	perform any matrix operation correctly	perform simple matrix operations	perform all matrix operations with minor errors	perform all matrix operations
P_U02	solve any system of linear equations nor determine the number of solutions	solve simple systems of linear equations or determine the number of solutions	solve simple system of linear equations and determine the number of solutions	solve all systems of linear equations and determine the number of solutions
P_U03	neither calculate derivatives of functions, nor use derivatives to determine local extremes values, test monotonicity and concavity	calculate simple derivatives of functions or use derivatives to determine local extreme values, test monotonicity and concavity	calculate derivatives of functions and use derivatives to determine local extreme values, test monotonicity and concavity	calculate all derivatives of functions and use derivatives to determine local extreme values, test monotonicity and concavity
P_U04	calculate definite indefinite integraland	indefinite calculateorsimple	calculate indefinite and definite integrals	calculate all indefinite and definite integrals

	definite	and/or use definite	and calculate the area
	integrals	integrals to calculate	between the
		the area between two	lines/curves
		lines/curves	

3.7. Literature

Obligatory literature	
Lay D., Linear Algebra and Its Applications, 5th Ed., Addison-Wesley, 2016.	
Thomas, G. B., Weir, M. D., Hass, J., Giordano, F. R., & Korkmaz, R. (2016). Thomas' calculus. Boston,	
Pearson Education.	

Supplementary literature

Lipschutz S., Schaum's outline of theory and problems of linear algebra, 3rd ed, McGraw-Hill, 2001. Haeussler E. F., Paul R. S., Wood R. (2005), Introductory Mathematical Analysis, Prentice Hall.

Khan Academy materials: https://www.khanacademy.org

Fundamentals of statistics

1. BASIC INFORMATION ON THE COURSE

Course name	Fundamentals of statistics		
Beginning year	2022/2023		
Faculty	Applied Information Technology		
Field of study	Information Technology		
Education level	First-cycle studies – undergraduate		
Education profile	Practical		
Specialty	-		

2. PREREQUISITES (resulting from the sequence of courses) None

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course			
	After completing the training, the student has the following knowledge			
P_W01	P_W01 Can illustrate the use of the probability calculus methods			
D 14/02	Can characterize the descriptive measures in a one- and two-dimensional			
P_W02	population			
	After completing the training, the student has the following SKLILLS			
P_U01 Can use the measures of description of one-dimensional population				
P_U02	He can apply the methods of characterizing a two-dimensional population			

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
10	-	-	14	-	-	3

3.3 Teaching delivery methods

Forms of classes	Delivery method
Lecture	Informative and problem-based, consisting of a presentation of the issues covered in the course and their conditions, procedures for solving and interpretation of results obtained by applying methods of calculus of probability and static methods, taking into account their use in computer science.
Laboratory	Case study and problem solving to learn the principles and techniques of calculations using methods of calculus of probability and statistics and interpretation of the results obtained.

3.4. Learning content (separately for each form of classes)

LECTURE

No.	Learning content	
L1	Random events and probability	
L2	Probability distributions of random variables and their parameters	
L3	Selected probabilistic models	
L4	Parametric description of the distribution in the population	
L5	Assessment of interacting variables in statistical processes	

LABORATORY

No.	Learning content	
Lab1	Probability distributions of random variables	
Lab2	Measures of location and scale parameters in the population	
Lab3	Asymmetry and kurtosis in the population	
Lab4	Assessment of the dependence of quantitative variables	
Lab5	Methods of describing the dependencies of qualitative variables	

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	Open test and / or task	lecture
P_W02	Open test	Lecture
P_U01	test	lab
P_U02	test	lab

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course	For grade 2	For grade 3	For grade 4	For grade 5
outcome	the student cannot	the student can	the student can	the student can
P_W01	illustrate any of the learned principles of the application of probability methods	to illustrate one of the learned principles of applying the methods of the probability theory	illustrate two of the learned principles of the application of probability methods	illustrate three of the learned principles of the application of probability methods
P_W02	provide at least 50% of correct answers to questions regarding the descriptive measures of unidimensional and multidimensional population	provide 50-75% of correct answers to questions regarding the descriptive measures of unidimensional and multidimensional population	provide 75-90% correct answers to questions regarding the descriptive measures of unidimensional and multidimensional population	provide at least 90% of correct answers to the questions regarding the descriptive measures of unidimensional and multidimensional population
P_U01	determine any of the given measures of the parametric description of the distribution in the population based on the presented data	determine any of the given measures of the parametric description of the distribution in the population based on the presented data	determine and interpret two of the given measures of the parametric description of the distribution in the population based on the presented data -if the results are not interpreted, the grade is reduced by 0.5	determine and interpret three of the given measures of the parametric description of the distribution in the population based on the presented data - if the results are not interpreted, the grade is reduced by 0.5
P_U02	determine any of the given measures of variable interconnection in statistical processes based on the data presented	determine any of the provided measures of variable interconnection in statistical processes based on the data provided	determine and interpret two of the given measures of variable interconnection in statistical processes based on the presented data - in the absence of interpretation of the results, the score is lowered by 0.5 points	determine and interpret three of the given measures of variable interconnection in statistical processes based on the presented data - in the absence of interpretation of the results, the score is lowered by 0.5 points

3.7. Literature

Obligatory literature

I. Miller, M. Miller, John E. Freund's mathematical statistics : with applications, Prentice Hall, 2003 M. R. Spiegel, et. All: Schaum's outline of theory and problems of probability and statistics. - 2nd ed. – New York : McGraw-Hill, cop. 2000

Supplementary literature
D.Levine et all., Statistics for Managers using Microsoft Excel, Prentice Hall, 2005

Programming

1. BASIC INFORMATION ON THE COURSE

. BASIC INFORMATION ON THE COOKSE			
Course name Programming			
Beginning year	2022/2023		
Faculty Applied Information Technology			
Field of study Information Technology			
Education level	First-cycle studies – undergraduate		
Education profile	Practical		
Specialty	-		

2. PREREQUISITES (resulting from the sequence of courses) Introduction to programming

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course			
	After completing the training, the student has the following knowledge			
P W01	has knowledge in the field of mathematics necessary for the analysis and development of			
_	computer programs and the implementation of algorithms			
	has structured knowledge in the field of methodology and programming techniques, including			
P_W02	algorithmic techniques and the importance of algorithmic and computational			
	thinking in solving problems with computer programs			
	knows and understands the methods, tools, theories and practices used to design, model and			
P_W03	implement software, including the stages of defining requirements, specifications, validation			
	and software testing			
	After completing the training, the student has the following SKLILLS			
	can effectively use the tools used in the construction and documentation of the software			
P_U01	development process, with particular emphasis on software control tools,			
	including the distributed version control system			
D 1102	is able to consciously and effectively use reusable resources in the construction of computer			
P_U02	programs			
	can design, implement, verify the correctness and debug programs in a high-level programming			
P_U03	language and implement algorithms, as well as assess their complexity			

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
20	-	-	20	15	-	4

3.3 Teaching delivery methods

Forms of classes	Delivery method
Lecture	Informative and problem-based lecture, combined with elements of demonstration.
Laboratory	Laboratory exercises at the computer. During the classes students independently implement and debug computer programs using the integrated environment.
Project	Implementation of the program to solve a given problem. The project is carried out in consultation with the teacher. At the end of the semester students present a working solution.

3.4. Learning content (separately for each form of classes)

LECTURE

Learning content
Pointers - the role of pointers in the program
Memory management - dynamic memory allocation
Using pointers to work with arrays and to pass arguments to functions
References - using a reference to pass arguments to a function
Pointers to functions
Basic concepts of object oriented programming - class, object, encapsulation
Defining classes and creating objects in an object-oriented programming language, valuable and dynamic objects, structures

L8	Class components - data fields, methods, constructors		
L9	Containers and algorithms in the STL library		
L10	Stages of the software development process - requirements specification, design,		
110	implementation, testing, implementation, cascade model		
LABORAT	ORY		
No.	Learning content		
Lab1	Working with pointers		
Lab2	Dynamic memory allocation - dynamic one- and multidimensional arrays		
Lab3	Passing arguments to functions - passing by value, pointer, reference		
Lab4	Pointers to functions		
Lab5	Defining classes and creating objects, header files		
Lab6	6 Access modifiers, data fields, methods		
Lab7	Constructors, initialization list, overloading constructors and methods		
Lab8	Dynamic objects, arrays of objects		
Lab9	Fundamentals of working with containers and algorithms in the STL library		
Lab10	Fundamentals of working with the version control system, documenting the code with		
documenting comments			
PROJECT			
No.	Learning content		
P1	Developing project specification		
P2	Program implementation		
Р3	Presentation of the result		

3.5. Methods of verification of learning outcomes

Course outcome	me Assessment method Form of classes within which attaining the outcome is verified	
P_W01	Open or closed question test	L
P_W02	Open or closed question test	L
P_W03	Open or closed question test	L
P_U01	Project presentation	Р
P_U02	Practical task	Lab
P_U03	Practical task	Lab

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course	For grade 2	For grade 3	For grade 4	For grade 5
outcome	the student cannot	the student can	the student can	the student can
P_W01	demonstrate the knowledge of mathematics necessary for the analysis and development of computer programs	demonstrate basic knowledge of mathematics necessary for the analysis and development of computer programs and the implementation of algorithms	demonstrate at a good level the knowledge of mathematics necessary for the analysis and development of computer programs and the implementation of algorithms	demonstrate at a very good level the knowledge in the field of mathematics necessary for the analysis and development of computer programs and the implementation of algorithms
P_W02	demonstrate knowledge of programming methodology and techniques	demonstrate knowledge of programming methodology and techniques	demonstrate knowledge of programming methodology and techniques, including algorithmic techniques	demonstrate knowledge of programming methodology and techniques, including algorithmic techniques and the importance of algorithmic and computational thinking in solving problems with computer programs

P_W03	demonstrate knowledge and understanding of the methods, tools, theories and practices used to design, model and implement software	at a basic level, demonstrate knowledge and understanding of the methods, tools, theories and practices used to design, model and implement software, including the stages of requirements definition, specification, validation and software testing	demonstrate the knowledge and understanding of the methods, tools, theories and practices used to design, model and implement software at a good level, including the stages of requirements definition, specification, validation and software testing	at a very good level, demonstrate knowledge and understanding of the methods, tools, theories and practices used to design, model and implement software, including the stages of requirements definition, specification, validation and software testing
P_U01	effectively use the tools used in the construction and documentation of the software development process, with particular emphasis on software control tools, including the distributed version control system	at the basic level, use the tools used in the construction and documentation of the software development process, with particular emphasis on software control tools, including a distributed version control system	use the tools used in the construction and documentation of the software development process at a good level, with particular emphasis on software control tools, including a distributed version control system	use the tools used in the construction and documentation of the software development process at a very good level, with particular emphasis on software control tools, including the distributed version control system
P_U02	use reusable resources in constructing computer programs	at the basic level, use reusable resources in constructing computer programs	at a good level, use reusable resources in constructing computer programs	at a very good level, use reusable resources in constructing computer programs
P_U03	design, implement, validate and debug programs in a high level programming language	design, implement, programs in a high level programming language	design, implement, verify and debug programs in a high level programming language	design, implement, verify the correctness and debug programs in a high-level programming language and implement algorithms, as well as assess their complexity

3.8. Literature

Obligatory literature
B. Stroustrup, Programming : Principles and Practice Using C++, Pearson Education, New Jersey, 2015, or
newer
B. Stroustrup, The C++ Programming Language, Pearson Education, New Jersey, 2013, or newer
R. C. Martin, Clean Code : A Handbook of Agile Software Craftsmanship, Pearson Education, Upper Saddle
River, 2009

Supplementary literature

D. Vandevoorde , N. M. Josuttis , D. Gregor, C++ Templates : The Complete Guide, Pearson Education, New Jersey, 2017

Computer system Architecture

1. BASIC INFORMATION ON THE COURSE

Course name	Computer systems architecture
Academic year	2022/2023
Faculty	Faculty of Information Technology
Field of study	Information Technology
Education level	First-cycle studies – undergraduate
Education profile	Practical
Specialty	-

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course			
NO.				
	After completing the training, the student has the following knowledge			
P_W01	Discuss the basics of computer logic and arithmetic.			
P_W02	To characterize the architecture of modern computers and discuss the			
F_002	design and features of embedded systems.			
	Discuss methods to evaluate and improve the reliability of embedded			
P_W03	systems.			
	After completing the training, the student has the following SKLILLS			
D 1101	Design, implement, verify and document a solution to an engineering task			
P_U01	that reflects the actual operating conditions of such a solution.			
	Use computer systems simulators to verify, analyze, test, and to identify			
P_U02	and assess the risk of a proposed solution to an engineering task.			

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
30	-	-	30	-	-	5

3.3 Teaching delivery methods

Forms of classes	Delivery method			
Lecture	Informative and problematic lecture - educational content will be provided in an accessible form and IT problems will be discussed along with their solutions.			
Laboratory	Exercises - individual practical exercises at the computer performed in accordance with the prepared laboratory manual. Teaching based on problem solving - work in groups of several people to solve the task set by the instructor. The task is similar to the task of computer system architects. There are several correct solutions. Presentation of solutions in the laboratory, discussion on the optimal solution.			

3.4. Learning content (separately for each form of classes)

TUTORIAL/LECTURE

No	Learning content
No	Learning content
W1	Computer logic.
W2	Arithmetic of computers.
W3	Classic computer architecture.
W4	Processors. Command lists. Assembler language basics. Organization of computer on assembler
vv4	language level.
W5	Hierarchy of memory in computer systems.
W6	Interfaces. Magistralls. External devices.
W7	Modern computer architectures. Multiprocessor architectures.
W8	Architectures and features of embedded systems. Microcontrollers. Microcontrollers
vvo	programming.

W9	Reliability of computer systems.
LAB/ R	ECITATION CLASS
No	Learning content
L1	Numerical systems, logic gates, design of combination systems.
L2	Implementation of assembler language programs for a PC.
L3	Implementation of assembler language programs for the microcontroller.
L4	Simulation and testing of the operation of a programmable logic controller (PLC).

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified	
P_W01			
P_W02	Final examination - open questions	Lecture	
P_W03			
P_U01	Practical tasks	Laboratory	
P_U02		Laboratory	

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course outcome	For grade 2	For grade 3	For grade 4	For grade 5
course outcome	the student cannot	the student can	the student can	the student can
P_W01	Discuss the basics of computer logic (features of combinatorial and sequential circuits). Discuss the basics of computer arithmetic (integer and floating point data types, addition and subtraction operations for these types).	Discuss the basics of computer logic (features of combinatorial and sequential circuits). Discuss the basics of computer arithmetic (integer and floating point data types, addition and subtraction operations for these types).	Discuss the basics of computer logic (features of combinatorial and sequential circuits, methods for designing them). Discuss the basics of computer arithmetic (integer and floating point data types, arithmetic operations for these types).	Discuss the basics of computer logic (features of combinational and sequential circuits, methods of their design, use of digital function blocks). Discuss the basics of computer arithmetic (integer and floating-point data types, arithmetic operations for these types, possibilities for implementing arithmetic operations).
P_W02	Characterize the architectures of modern computer systems and discuss the design and features of embedded systems.	Characterize the architectures of modern computer systems and discuss the design and features of embedded systems.	Characterize the architectures of modern computer systems and discuss the design and features of embedded systems with differences.	Characterize the architectures of modern computer systems and discuss the design and features of embedded systems with an indication of the differences and the resulting implications for applications.
P_W03	Discuss methods and techniques for simulating, testing real computer systems.	Discuss methods and techniques for simulating, testing real computer systems.	Discuss methods and techniques for simulating, testing real computer systems with differences.	Discuss methods and techniques for simulating, testing real computer systems with an indication of the differences and the resulting

				implications for applications.
P_U01	Design, implement, verify and document a solution to a simple engineering task.	Design, implement, verify and document a solution to a simple engineering task.	Design, implement, verify and document one solution to a complex engineering task.	Design, implement, verify and document more than one solution to a complex engineering task.
P_U02	use a computer or embedded system simulator to check the correctness of the proposed engineering task solution	use a computer or embedded system simulator to check the correctness of the proposed engineering task solution	use a computer or embedded system simulator to check the correctness of the proposed solution of the engineering task, indicate places in the code where any errors occurred	use the computer or embedded system simulator to check the correctness of the proposed solution of the engineering task, indicate the places in the code where the errors occurred, indicate the potential places that affect the reliability of the solution

3.7. Literature

Obligatory literature

Harris D.M., Harris S.L.: Digital Design and Computer Architecture. Elsevier, 2007.

Catsoulis J.: Designing Embedded Hardware. O'Reilly, 2005.

Steiner C.: The 8051/8052 Microcontroller. Architecture, Assembly Language, and Hardware Interfacing. Universal Publishers, 2005.

Supplementary literature

Abd-El-Barr M., El-Rewini H.: Fundamentals of computer organization and architecture. John Wiley & Sons, 2005. Blum R.: Professional Assembly Language. John Wiley & Sons, 2005.

Databases

1. BASIC INFORMATION ON THE COURSE

1. DASIC INFORMATION ON	
Course name Databases	
Academic year	2022/2023
Faculty	Faculty of Information Technology
Field of study	Information Technology
Education level	First-cycle studies – undergraduate
Education profile	Practical
Specialty	-

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

r		
No.	Description of the learning outcomes for the course	
	After completing the training, the student has the following knowledge	
P_W01	Can discuss the issues necessary for building and analyzing databases	
P_W02	Can explain information management and processing concepts and rules	
	After completing the training, the student has the following SKLILLS	
D U01	Can develop a schematic diagram of a relational database based on an entity	
P_U01	relationship diagram	
P_U02	Is able to implement a conceptual framework in a relational model	
	Can formulate simple and complex inquiries into real-life databases using query	
P_U03	languages with verification of the inquiry	
P_U04	Able to create selected components of database systems	

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
20	-	-	20	-	-	3

3.3 Teaching delivery methods

Forms of classes	Delivery method		
Lecture	Knowledge transferred in the form of a lecture interspersed with the forms of informative, problem and conversation. In addition, the lecturer asks the topic for independent study in order to broaden knowledge.		
Laboratory	The course consists in performing experiments related to network traffic analysis and implementing networks reflecting real-world conditions with appropriate protocols and devices. Students receive a set of instructions during the first class which includes basic exercises with step-by-step instructions explaining the tasks to be performed as well as problem exercises in which the goal to be achieved is specified without specifying the method. Classes are conducted using real equipment (typical for production networks) under conditions similar to real network operation.		

3.4. Learning content (separately for each form of classes)

LECTURE

No.	Learning content	
L1	Introduction to the issue of databases. Information models. Data modelling. Database systems	
L2	A great database model - definition, structure and ownership. Relationship Algebra	
L3	Database query languages. Manipulating data with SQL queries. Extending SQL language with	
LS	procedural programming mechanisms.	
L4	Modeling conceptual and implementation diagrams in a relational model. Standardization of	
L4	logical database schemas. Organization of files used for data storage. Indexing .	
L5	Transactions - ownership, transaction diagrams, isolation, seriality, concurrency handling and	
13	management	

L6	Database management system: indexing (construction of dense and rare indices, tree structure	
LO	B-), query optimization	
L7	Scattered databases and client-server architecture. Data warehouses. Non-relational databases	
LABOR	ATORY	
No.	Learning content	
Lab1	Constructing simple and complex SQL queries. Verification of results	
Lab2	Instructions for manipulating data	
Lab3	Implementation of databases. Data import	
Lab4	T-SQL language. Declaring variables and constants. Overview of basic control structures of T	
LaD4	SQL language.	
Lab5	T-SQL Language: Triggers, stored procedures and functions, perspectives, cursors	

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	Open test	Lecture
P_W02	Open test	Lecture
P_U01	Practical tasks	Laboratory
P_U02	Practical tasks	Laboratory
P_U03	Practical tasks	Laboratory
P_U04	Practical tasks	Laboratory

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE OUTCOMES

Course outcome	For grade 2 the student cannot	For grade 3 the student can	For grade 4 the student can	For grade 5 the student can
P_W01	define the basic issues necessary to build and analyze databases	sues necessary toissues necessary tonecessary for theuild and analyzebuild and analyzeconstruction and		discuss issues necessary to build and analyze databases based on practical examples
P_W02	explain the basic concepts and principles of information management and processing	explain basic concepts and principles of information management and processing	correctly use the basic concepts and principles of information management and processing	correctly use the basic concepts and principles of information management and processing while providing alternative solutions to the problem
P_U01	develop a diagram of the entity-substance diagram	develop an entity bond diagram made according to notation, naming entities, attributes and compounds	develop an entity binder diagram made according to notation, naming of entities, attributes and compounds, correct multiplication marks and primary keys	develop a complex enation-beam diagram made according to notation, naming of entions, attributes and compounds, correct multiplication marks and primary keys
P_U02	implement tables based on the conceptual framework	implement tables based on the conceptual framework, correctly define data types	implement tables based on the conceptual schema, correctly define data types and integrity constraints (primary key, unique value, domain constraints, foreign key)	implement tables based on a conceptual schema, correctly define data types, integrity constraints (primary key, unique value, domain constraints,

				foreign key) and interfaces for data presentation, editing and handling
P_U03	formulate simple queries using query languages	formulate simple queries using query languages	formulate simple and complex queries using query languages	formulate and verify simple and complex queries using query languages
P_U04	create basic components of the database system	create basic components of the database system	create selected components of the database system based on simple tasks	create selected components of the database system based on complex tasks

3.7. Literature

Obligatory literature
An Introduction to Database System, vol. II, Adison-Wesley Pub. Comp, or newer
Abraham Silberschatz, Henry Korth, S. Sudarshan, Database System Concepts, McGraw-Hill Education; 7th edition
(April 26, 2019)

Supplementary literature

Carlos Coronel, Steven Morris, Database Systems: Design, Implementation, & Management Cengage Learning; 13th edition (January 1, 2018)

Software Engineering

1. BASIC INFORMATION ON THE COURSE

1. DASIC INFORMATION ON		
Course name	Software engineering	
Beginning year	2022/2023	
Faculty	Applied Information Technology	
Field of study	Information Technology	
Education level	First-cycle studies – undergraduate	
Education profile	Practical	
Specialty	-	

2. PREREQUISITES (RESULTING FROM THE SEQUENCE OF COURSES)

			-	,	
I	Programming	, OPERATING SY	STEMS		

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course			
After completing the training, the student has the following knowledge				
P_W03	discuss techniques and methods of software evaluation and testing.			
P_W02	present the methods, tools, theories and practices used for software design and implementation, including the stages of requirements definition, specification, validation and software testing.			
P_W03	discuss the life cycle of devices and their software.			
P_W04	present the principles of software modeling and design, and discuss the importance of trade-offs in the design solution selection phase.			
	After completing the training, the student has the following SKLILLS			
P_U01	estimate the time needed to complete the commissioned programming task in order to develop a work schedule that will ensure that the predefined values of the criterion components of the dependency triangle are maintained.			
P_U02	effectively use the tools used in the construction and documentation of the software development process, with particular emphasis on software control tools, including version control and configuration management.			
P_U03	make the right selection of the environment, programming language best suited to both the type of the project and the related infrastructure.			
P_U04	propose a solution to the defined practical engineering task, comparing the existing solutions, define its specification, compliance with existing standards, assess the positive and negative aspects of the proposed solution, perform a design compliant with the specification and verify the obtained results and present the solution.			
	After completing the training, the student has the following social competences			
P_K01	perform the role of a project manager in a small and medium project team and as such is able to define project requirements, conduct a requirements analysis, create its specification and supervise the work of the project team.			

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
22	-	-	24	14	-	5

3.3 Teaching delivery methods

Forms of classes	Delivery method		
Lecture Informative and problem-based lecture, combined with elements of demonstratio			
Laboratory	Exercise - practical exercises with the use of available CASE tools and dedicated IDE environment with the application of methodology taking into account the real conditions of software engineer's work.		
Project	Project-implementation of an appropriately defined software project using an iterative and incremental model.		

3.4. Learning content (separately for each form of classes)

LECTURE

No.	Learning content
L1	Genesis, scope and goals of software engineering. The processes that determine the success of a software project.
L2	Requirements engineering and the process of capturing and formalizing business, functional, and non- functional level requirements, as well as system constraints, integration constraints, and business rules for the software being developed.
L3	Models for managing the phases of the software development process. Software development life cycle.
L4	Static validation and verification, and dynamic verification and validation in the IT product delivery process.
L5	Designing software architecture using UML notation.
L6	Use case, class, state and activity diagrams in relation to the "4+1" model perspectives.
L7	API documentation and the process of creating it.
L8	Automation of activities related to the software development process.
L9	Creational design patterns as a concept for solving repeatedly recurring problems.
L10	Structured design patterns as a concept for solving repeatedly recurring problems.
L11	Activity-based design patterns as a solution concept for repeatedly recurring problems.

LABORATORY

No.	Learning content
Lab1	Methods of building module tests with the use of dedicated structural unit testing tools.
Lab2	Verification and validation of the produced software product.
Lab3	Requirements specification. Construction and modeling of software components with the use of use case diagram notation.
Lab4	Building and modeling of the software components using the class diagram notation.
Lab5	Building and modeling of the software components using the activity diagram notation.
Lab6	Building and modeling of the software components using the state diagram notation.
Lab7	Creating API code documentation.
Lab8	Creational design patterns and their implementation.
Lab9	Structured design patterns and their implementation.
Lab10	Activity design patterns and their implementation.

PROJECT

No.	Learning content
P1	Development of the SRS document, developing a project dictionary and checking its consistency with the requirements specification; developing a diagram of use cases; selection of the functional implementation module and building interaction; designing classes and interfaces for the indicated functionality; compilation and code implementation; building API documentation and module tests.

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01		
	Open question exam	Lecture
P_W02		

P_W03		
P_W04		
P_U01	Practical task	Laboratory
P_U02	Project evaluation	Dreiset
P_U03	Project evaluation	Project
P_U04	Practical task	Laboratory
P_K01	Project evaluation	Project

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE OUTCOMES

3.0. CRITERIA FC	For grade 2	For grade 3	For grade 4	For grade 5
Course outcome	-	-	-	
P_W01	the student cannot discuss fundamental software testing rules with relation to its hardware and process specificity, which led to hidden errors elimination	the student can discuss fundamental software testing rules with relation to its hardware and process specificity, which led to so-called hidden errors elimination.	the student can correctly define all test cases and necessary software functionalities list, which have to be tested taking into account the final user requirements.	the student can present a sample test plan to detect hidden errors and errors in the interfaces and interactions between the software components that are subject to the evaluation process.
P_W02	discuss the impact of all known software lifecycle models on its analysis, design, implementation, testing and deployment process.	discuss the impact of all known software life cycle models on its analysis, design, implementation, testing and implementation process.	indicate the area of the software being developed which, depending on the model used and the requirements of the end user, may be subject to potential changes.	formalize, in terms of brevity and accuracy of characteristics, aspects of software design methods taking into account the "top- down" and "bottom- up" approaches.
P_W03	present the life cycle of the device and the software that is dedicated to it.	present the life cycle of the device and the software that is dedicated to it.	characterize the effects as well as documents and products of the implementation of each stage of the IT project life cycle for the model indicated by them.	characterize the effects, documents and products of the implementation of each stage of the IT project life cycle for the model indicated by the teacher.
P_W04	present the basic principles of software modeling taking into account the specificity of the processes and the architectural conditions of the devices for which it will be created.	present the basic principles of software modeling taking into account the specificity of the processes and the architectural conditions of the devices for which it will be created.	discuss the significance of compromises in the phase of choosing the design solution method depending on the conditions resulting from the requirements specification.	choose the right methodology for the type of problems to be solved related to the specificity of the processes and the conditions of the architecture of devices for which the software is dedicated.
P_U01	identify the basic factors that have a major impact on the success of the undertaken project.	identify the basic factors that have a major impact on the success of the project.	estimate the time necessary to implement individual stages and all phases of a programming project.	correctly estimate the time needed for the implementation of the commissioned programming task in the implementation process a work schedule that will ensure the

P_U02	set up and configure a repository of the indicated software version control system, so that it is possible to register changes to the created IT product depending on its version, date and author.	set up and configure a repository of the indicated software version control system, so that it is possible to register changes to the created IT product depending on its version, date and author.	define the file access rules according to the roles of individual development team members of the indicated version control system.	maintenance of the predefined values of the criterion components of the dependency triangle. using the available tools, correctly create user documentation and API documentation of the indicated software, so that these documents can be registered using the selected DMS application (Document Management System).
P_U03	choose both the IDE environment and CASE tools in which you can implement a predefined project.	choose both the IDE environment and CASE tools in which you can implement a predefined project.	choose the optimal environment and optimal tools for the assumed software development methodology in the context of the problem domain.	make the right selection of the environment and programming language best suited to both the type of the project and the related infrastructure.
P_U04	present the results of the IT application implementation process in accordance with the assumed project methodology.	present the results of the IT application implementation process in accordance with the assumed project methodology.	present the advantages and disadvantages of the obtained solution designed in accordance with the adopted methodology and implemented software without the ability to properly carry out the process of validation and verification of the application.	present the advantages and disadvantages of the obtained solution designed in accordance with the adopted methodology and implemented software, as well as perform the correct validation and verification process of the final product of the implemented programming project
Р_К01	work in the team, showing acquaintance of IT project management fundamental aspects	work in the team, showing acquaintance of IT project management fundamental aspects.	work in the team, showing acquaintance of IT project management fundamental aspects and can define project requirements, conduct requirements analysis, create it specification	perform the manager role in the project small or middle team and can define project requirements, conduct requirements analysis, create it specification and supervise the work of project team

3.7. Literature

Obligatory literature Sommerville I.: *Software Engineering.* Pearson, 2016. Vliet H.: *Software engineering : principles and practice*. John Wiley & Sons, 2008.

Supplementary literature Brooks F. P.: *The mythical man-month. Esseys on sofware engineering*. Addison-Wesley, 2005. Minoli D.: *Enterprise architecture A to Z : frameworks, business process modeling, SOA, and infrastructure technology*. CRC Press, 2008.

Programming languages

1. BASIC INFORMATION ON THE COURSE

Course name	Programming Languages	
Academic year	2022/2023	
Faculty	Faculty of Information Technology	
Field of study	Information Technology	
Education level	First-cycle studies – undergraduate	
Education profile	Practical	
Specialty	Programming	

2. PREREQUISITES (resulting from the sequence of courses) Algorithms and data structures

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course		
	After completing the training, the student has the following knowledge		
P_W01	Analyze the source code of a program and predict its operation		
P_W02	Explain the basic concepts related to programming languages		
	After completing the training, the student has the following SKLILLS		
P_U01	Complete the implementation of a simple programming task.		
P_U02	Analyze a small IT problem, design a high-level language program for this problem, implement, remove errors and run the execution tests of the program.		
	After completing the training, the student has the following social competences		
P_K01	Prepare the project presentation and discuss on the group forum		

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
-	-	-	32	24	-	7

3.3 Teaching delivery methods

Forms of classes	Delivery method
Laboratory	The classes are realized in the laboratory. Students receive instructions on the basis of which they perform exercises to solve programming problems using selected methods and programming languages.
Project	The project involves the design and implementation of a computer application in a high-level programming language, preparation of project documentation and a presentation of the work results. The project is carried out in small teams or independently, depending on the complexity of the problem.

3.4. Learning content (separately for each form of classes)

LAB CLA	
No	Learning content
Lab1	Familiarization with selected environments, compilers and interpreters of programming
Lani	languages.
Lab2	Elements of program design in imperative programming
Lab3	Elements of the program design in structural programming
Lab4	Elements of the program design in functional programming
Lab5	Elements of program design in procedural programming
Lab6	Elements of program design in event-driven programming
Lab7	Elements of program design in declarative programming
Lab8	Creating user applications - selected solutions for desktop technologies
Lab9	Selected applications of programming languages - internet applications, data science, computer
Laby	games

No	Learning content
P1	The subject of the project is to create a small computer application in a chosen language and programming technology. The topic of the implemented application is determined individually with the teacher. The task will be divided into several stages: problem specification, program design, implementation and testing. The completed project must be presented by the realizing team on the group forum.

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	Final test consisting of assignments of the analysis and interpretation of program code fragments	Laboratory
P_W02	Final test with open questions	Laboratory
P_U01	Final test consisting of simple programming tasks	Laboratory
P_U02	Evaluation of project documentation and correctness of program implementation	Project
P_K01	Evaluation of the project presentation	Project

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE OUTCOMES

Course outcome	For grade 2	For grade 3	For grade 4	For grade 5
	the student cannot	the student can	the student can	the student can
	Analyze at least 50%	Analyze at least 50%	Analyze at least 70%	Analyze at least 90%
D \\/01	of the source code of	of the source code of	of the source code of	of the source code
P_W01	the program and	the program and	the program and	of the program and
	predict its operation	predict its operation	predict its operation	predict its operation
	Explain basic	Explain to a sufficient	Explain to a good	Explain to a very
	concepts related to	extent the basic	extent the basic	good extent the
P_W02	programming	concepts related to	concepts of	basic concepts of
	languages	programming	programming	programming
	languages	languages	languages	languages
	Complete	Complete	Complete	Complete
	implementation of at	implementation of at	implementation of at	implementation of
	least 50% of	least 50% of	least 70% of	at least 90% of
P_U01	programming tasks	programming tasks	programming tasks	programming tasks
	specified in the	specified in the	specified in the	specified in the
	colloquium.	colloquium.	colloquium.	colloquium.
				Analyze a small IT
		Analyze a small IT	Analyze a small IT	problem with a high
		problem with a low	problem with a mid-	level of
		level of	level of	sophistication,
	Analyze a small IT	sophistication, design	sophistication, design	design a high-level
	problem and design a	a high-level language	a high-level language	language program
P_U02	high-level language	program for this	program for this	for this problem,
	program for this	problem, create the	problem, create the	create the
	problem.	implementation,	implementation,	implementation,
		remove errors and	remove errors and	remove errors and
		carry out the run-time	carry out the run-time	carry out the run-
		tests of this program.	tests of this program.	time tests of this
				program.
				Prepare a project
	Prepare a project		Prepare a project	presentation and
P_K01	presentation and lead	Prepare a project	presentation and	conduct it on the
	a group discussions	presentation	conduct it on the	group forum, and
	a Broup discussions		group forum	conduct discussion
				in the group forum

3.7. Literature

Obligatory literature

R. Sebesta, Concepts of Programming Languages, Addison Wesley, 2008.

P. Van Roy, S. Haridi, Programming: conceptions, techniques, and models, Helion, Gliwice 2005.

Supplementary literature

M. Summerfield, Python 3: complete introduction to programming, Helion, Gliwice, 2010.

P. Blackburn, J. Bos, K. Striegnitz, Learn Prolog Now!, College Publications, 2006.

P. Seibel, Practical COMMON LISP, Berkeley, Apress, 2005.

Postproduction and special effects

1. BASIC INFORMATION ON THE COURSE

COURSE NAME	Postproduction and Special	Postproduction and Special Effects						
FACULTY	Faculty of Applied Informat	Faculty of Applied Information Technology						
FIELD OF STUDY	Information Technology	Information Technology						
CYCLE	first-cycle	first-cycle						
EDUCATION PROFILE	practical	practical						
SEMESTER (NUMBER)	6	6 ACADEMIC YEAR 2022/2023 FORM OF STUDIES full- time						
FORM OF CLASSES	FORM OF CREDITS NUMBER OF HOURS ECTS CREDITS							
Laboratory	Credit with grade	30 8						
Project	Credit with grade	30						

2. PREREQUISITES (resulting from course succession)

Raster and vector graphics, Graphic design workshop, Introduction to computer animation

3. COURSE OUTCOMES - KNOWLEDGE, SKILLS AND SOCIAL COMPETENCES

Item	Description of the learning outcomes for the course On completing the course, the student has the following KNOWLEDGE, SKILLS AND SOCIAL COMPETENCES
P_U01	can use software and hardware proper for edit moving image
P_U02	can implement tasks of the post production process and special effects
P_U03	can create the project taking into account research elements

4. COURSE CONTENT (separately for each form of classes)

Laboratory

Item	Course Content
L1	Performing advanced graphic compositions using materials prepared in-house, discussing the tools needed to complete the project. Idea creation.
L2	Realization of the project based on prepared materials in 2D raster graphics software, realization of the idea based on the tools learned.
L3	Preparation of film footage for composition with special effect. Idea creation.
L4	Preparation of a fragment of the film using early prepared materials, composition and advanced post-production functions in special effects software.

Project

Item	Course Content
I P1	Realization of own concept for the composition of a still or film image based on advanced graphic program functions learned during laboratory classes. Idea creation, material preparation, project realization.

5. METHODS OF VERIFYING ATTAINING COURSE OUTCOMES

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_U01	A practical task	Laboratory
P_U02	A practical task	Laboratory
P_U03	Project evaluation	Project

6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE OUTCOMES

Course outcome For the grade of 2 the student cannot		For the grade of 3 the student can	For the grade of 4 the student can	For the grade of 5 the student can	
P_U01 use software and hardware proper for edit moving image		use software and hardware proper for edit moving image at sufficient level to realize indicated tasks	use software and hardware proper for edit moving image at medium level to realize indicated tasks	use software and hardware proper for edit moving image at high level to realize indicated tasks	
P_U02 cannot implement tasks of the post production process and special effects		can implement the most important tasks of the post production process and special effects	can implement more complex tasks of the post production process and special effects	can implement more complex tasks of the post production process and special effects demonstrating proficiency	
P_U03	cannot design, create the project taking into account research elements	can take into account simple research element in project	can perform a research experiment in project	can perform a research experiment in project demonstrating independent work	

7. LITERATURE

Obligatory Reading

Adobe Photoshop CC Classroom in a Book (2018 release) (Classroom in a Book (Ado-be)), Andrew Faulkner and Conrad Chavez, 2018.

Adobe After Effects CC Classroom in a Book (2019 Release), Lisa Fridsma, Brie Gyncild, Adobe Press; 1 edition (December 31, 2018) or newer

Supplementary Reading

The Anatomy of Design: Uncovering the Influences and Inspirations in Modern Graphic Design, Steven Heller, Mirko Ilic, 2009.

The Language of Graphic Design Revised and Updated: An illustrated handbook for understanding funda-mental design principles, Richard Poulin, 2018.

The Fantasy Illustrator's Technique Book, Gary A. Lippincott, Barron's Educational Series 2007r.

Software development techniques

L BASIC INFORMATION ON THE COURSE			
Course name	Software Development Techniques		
Beginning year 2022/2023			
Faculty	Applied Information Technology		
Field of study	Information Technology		
Education level	First-cycle studies – undergraduate		
Education profile	Practical		
Specialty	Programming		

1. BASIC INFORMATION ON THE COURSE

2. PREREQUISITES (resulting from the sequence of courses)

Algorithms and data structures, Fundamentals of programming, Programming languages

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1 Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course	
	After completing the training, the student has the following SKLILLS	
P_U01	Prepare the project individually or in a small team to solve a specific real problem; estimate the time consuming and perform it according to a specified schedule in order to be completed within the set deadline	
P_U02	Develop documentation of the project task	
P_U03	Create applications using and integrating various solutions and technologies	
P_U04	Design and implement the application by selecting appropriate technologies and programming methods	

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
-	-	-	30	30	-	8

3.3 Teaching delivery methods

Forms of classes	Delivery method	
Laboratory Practical exercises and problem solving according to the laboratory manual		
Project	Design and implementation of a software project involving the development of an application performing a specific task or solving a specific real-world problem. Development of specifications, documentation and presentation of the developed solution.	

3.4. Learning content (separately for each form of classes)

LABORATORY

Learning content
Application development in selected architectures - development techniques and tools
Application of selected design patterns
Object-relational model for data access
Techniques of implementing business logic components
Mechanisms for maintaining the application status
Techniques of implementation of the presentation and distribution layer
Application integration techniques
Distribution, implementation and maintenance of applications
Learning content
Determining the design assumptions of the application - requirements specification.
Determining the application architecture and technologies used - preparing the application
design.
Implementation, launch and testing of applications
Post-development documentation (including instructions for installation / deployment).
Application presentation

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_U01	Evaluation of the project implementation	project
P_U02	Evaluation of project documentation	project
P_U03	Practical exam	laboratory
P_U04	Practical exam	laboratory

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course	For grade 2	For grade 3	For grade 4	For grade 5
outcome	the student cannot	the student can	the student can	the student can
P_U01	Carry out the project according to the set scope and time	Perform the project in accordance with the established scope and within the set time limit	Complete the individual stages according to the set schedule	Complete individual stages in accordance with the agreed schedule and regularly report the progress of work on the project
P_U02	Make and submit the project documentation / task containing at least the description of the application on time	Make and submit the project / task documentation on time containing at least the description of the application	Make and submit the project / task documentation on time containing at least a description of the solutions used and a description of the application	Make and submit the project / task documentation on time containing at least a description of the solutions used, a description of the application and installation instructions
P_U03	Create a simple application and verify its operation	Create a simple application and verify its operation	Create an application using several different techniques and technologies	Create a complex database application using several different techniques and technologies
P_U04	Apply a predetermined method to solve a given problem according to the design	Apply a predetermined method to solve a given problem according to the design	Design and implement a solution that meets a specific task	Analyze possible solutions and then select the appropriate methods and technologies to design and implement an efficient and effective solution

3.8. Literature

Obligatory literature

Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice, Addison-Wesley Professional; 2012, Microsoft Application Architecture Guide (Patterns & Practices), Microsoft Press, 2009

Supplementary literature

Gregor Hohpe, Bobby Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions,

Addison-Wesley Professional, 2003

Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley Professional, 2002

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns: Elements of Reusable Object-Oriented

Software, Addison-Wesley Professional, 1994

Master's degree

Business analysis

1. BASIC INFORMATION ON THE COURSE

Course name	Business Analysis		
Academic year	2022/2023		
Faculty	Faculty of Information Technology		
Field of study	Information Technology		
Education level	Second-cycle – postgraduate		
Education profile	Practical		
Specialty	-		

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course On completing the course, the student has the following KNOWLEDGE, SKILLS AND SOCIAL COMPETENCES
P_W01	Use the conceptual framework of business analysis, explain the most important goals and discuss typical tasks of the analyst, as well as methods, tools and techniques recommended by the BABOK standard.
P_U01	Perform typical analytical tasks related to selected knowledge areas defined by the BABOK standard, using selected methods and techniques.
P_K01	Explain the importance of business analysis in the context of IT projects and activities to improve the functioning of enterprises.

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
12	-	-	14	-	-	2

3.3. Learning content (separately for each form of classes)

LECTURE

Learning content
Definition of basic concepts related to business analysis, its goals and contexts in which it is used.
Characteristics of basic knowledge areas, which includes business analysis, review of techniques, methods and tools as well as required skills.
Planning and monitoring business analysis.
Strategic analysis.
Eliciting requirements and cooperation with stakeholders.
Requirements management life cycle - specification, modeling, analysis, verification and
validation as well as requirements communication.
TORY
Learning content
Presentation of the problem domain for which analytical activities will be carried out.
Business analysis planning - business analysis activities in the context of project activities
Identification of stakeholders and defining business needs and solution vision.
Business modeling - scope modeling, process map, business objects modeling.
Modeling of business processes - introduction to BPMN notation.
Specification of the requirements for the solution.

3.4. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01, P_K01	Oral exam - problem and open questions.	Lecture
P_U01	Assessment of gradually acquired skills, based on the results of students' work carried out during the laboratories.	Labs

3.5. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

0	UT	CO	MES	

	For grade 2	For grade 3	For grade 4	For grade 5
Course outcome	the student cannot	the student can	the student can	the student can
P_W01	explain the essence of business analysis, indicate its goals and briefly present the characteristics of knowledge areas defined by the BABOK standard	explain the essence of business analysis, indicate its objectives and briefly present the characteristics of knowledge areas defined by the BABOK standard	indicate selected techniques and methods, explain their application and how to use them in business analysis	selected areas of business analysis in the scope defined by BABOK.
P_U01	apply basic techniques and methods in simple analytical tasks.	apply basic techniques and methods in simple analytical tasks.	apply the indicated techniques and methods in business analysis at an intermediate level of difficulty.	independently choose appropriate techniques and methods for analytical tasks and plan analytical tasks in accordance with the guidelines of the BABOK standard.
Р_КО1	explain generally the importance of business analysis for the success of IT projects.	explain generally the importance of business analysis for the success of IT projects.	discuss in detail the role of business analysis and its importance for the success of IT projects and activities to improve the functioning of enterprises	point to good practices and standards related to business analysis and their importance in the professional preparation of IT specialists.

3.6. Literature

Obligatory literature

International Institute of Business Analysis: BABOK, v3. A guide to the business analysis body of knowledge. IIBA Press, 2015.

Wiegers, K.: Software Requirements. Microsoft Press, 2013

Supplementary literature

Brooks F. P.: The mythical man-month. Esseys on sofware engineering. Addison-Wesley, 2005. Minoli D.: Enterprise architecture A to Z : frameworks, business process modeling, SOA, and infrastructure technology. CRC Press, 2008.

Infrastructure and electronic services

Infrastructure of Electronic Services (MA degree - 1 ECTS) - Electronic services - history and new trends; - Trust in the field of electronic communication; - Authentication mechanisms, PKI and its services; - Models and mechanisms of trust, Certificates and their management; - Cryptography - encryption algorithms and protocols Scaled computer networks; - Computer systems virtualization; - Data Centers;

- Electronic data flow monitoring.
English Language

English Language (MA degree - 4 ECTS)

- Development of vocabulary resources in accordance with the obligatory textbook at a given level,

including vocabulary in the field of learning and disciplines relevant to the field of study.

- Grammatical structures in accordance with the obligatory textbook at a given level.

-Practical understanding of the written text in accordance with the textbook at a given level, taking into account the field of learning and disciplines relevant to the field of study.

- Practice listening comprehension in accordance with the textbook at a given level.

Foreign language class - Developing the ability to prepare oral presentations in accordance with the textbook at a given level, taking into account the subject area of learning and disciplines relevant to the field of study.

- Development of writing skills in accordance with the textbook at a given level, taking into account the subject area of learning and disciplines relevant to the field of study.

Team Management

1. BASIC INFORMATION ON THE COURSE

Course name	Team management			
Academic year	2022/2023			
Faculty Faculty of Information Technology				
Field of study	Information Technology			
Education level	Second-cycle studies – postgraduate			
Education profile	Practical			
Specialty	-			

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

			Reference to
No.	Description of the learning outcomes for the course	learning	
	NO.	Description of the learning outcomes for the course	outcomes for the
			field of study
Γ	P W01	Describe the role of human factor and HR management in organizational	K W04
	P_001	structures and present basic relationships among the structures	K_VV04

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
-	-	-	-	-	10	1

3.3 Teaching delivery methods

Forms of classes		Delivery method							
E-learning	expository materials)	method	(didactic	film),	programmed	method	(working	with	teaching

3.4. Learning content (separately for each form of classes)

E-LEARNING

No.	Learning content
eL1	Values and strategy of a company
eL2	Management styles
eL3	Motivation and management techniques: supervising, coaching, mentoring and active listening
eL4	Change management and feedback
eL5	Charisma of a leader

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	Assessment including open-ended questions with extended answers	eL

3.6. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course For grade 2		For grade 3	For grade 4	For grade 5
outcome	the student cannot	the student can	the student can	the student can
D W01	Describe the role of	Describe in 51-69% the	Describe in 70-94% the	Describe in at least 95%
P_W01	human factor and HR	role of human factor and	role of human factor and	the role of human factor

managem	ent in HR mana	gement in HR	management in	and HR management in
organizatio	onal structures organizat	tional structures org	ganizational structures	organizational structures
and prese	nt basic and pres	ent 51-69% of and	d present 70-94% of	and present in at least
relationsh	ps among the basic rela	ationships bas	sic relationships	95% basic relationships
structures	among th	ne structures am	ong the structures	among the structures

3.7. Literature
Obligatory literature
Management of organization in the age of globalization / ed. by Mirosław K. Szpakowski, Barbara M. Kolbus - Zamos
Knowledge Innovation Center, 2012.
Project management : a managerial approach / Jack R. Meredith, Samuel J. Mantel 7th ed Hoboken, NJ : John
Wiley, cop. 2010

Supplementary literature	
Goleman Daniel, Leadership that gets results, www.hrb.org	
Herzberg Frederic, One more time, how do you motivate employees, www.hbr.org	
Lencioni Patrick, Make your values mean something, www.hbr.org	
Martin Roger, The big lie of strategic planning, www.hbr.org	

Sociology

1. BASIC INFORMATION ON THE COURSE

.: BASIC INFORMATION ON THE COURSE			
Course name	Sociology		
Academic year	2022/2023		
Faculty Faculty of Information Technology			
Field of study	Information Technology		
Education level	Second-cycle studies – postgraduate		
Education profile	Practical		
Specialty -			

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

No.	Description of the learning outcomes for the course	
	After completing the training, the student has the following knowledge	
P_W01	Enumerate the types of social groups	
P_W02	Enumerate the types social stratifications	
P_W03	Name the characteristics of contemporary society	

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
-	-	-	-	-	20	1

3.3 Teaching delivery methods

Forms of classes	Delivery method
E-learning	Programmed text - a sequence of logically and substantively related pieces of information on a given topic, which is to be assimilated using a computer with Internet access. Each piece of information ends with questions and tasks to be completed, to which the learner formulates answers and receives feedback on the correctness of the answers and a suggestion for the next steps.

3.4. Learning content (separately for each form of classes)

E-LEARN	E-LEARNING				
No.	Learning content				
eL1	Module II - Culture				
eL2	Module III - Socialization				
eL3	Module V - Social Class and Social Stratification				
eL4	Module VI - Race and Ethnicity				

3.5. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	 Two posts on the forum Final test 	eL
P_W02	 Two posts on the forum Final test 	eL
P_W03	 Two posts on the forum Final test 	eL

Course	For grade 2	For grade 3	For grade 4	For grade 5
outcome	the student cannot	the student can	the student can	the student can
P_W01	Has not gained 50% of points on final test, has not posted two posts on the forum	Has gained 50% of points on final test, has posted two posts on the forum	Has gained 70% of points on final test, has posted two posts on the forum	Has gained 90% of points on final test, has posted two posts on the forum
P_W02	Has not gained 50% of points on final test, has not posted two posts on the forum	Has gained 50% of points on final test, has posted two posts on the forum	Has gained 70% of points on final test, has posted two posts on the forum	Has gained 90% of points on final test, has posted two posts on the forum
P_W03	Has not gained 50% of points on final test, has not posted two posts on the forum	Has gained 50% of points on final test, has posted two posts on the forum	Has gained 70% of points on final test, has posted two posts on the forum	Has gained 90% of points on final test, has posted two posts on the forum

3.7. Literature

Obligatory literature P. Berger: Invitation to Sociology: A Humanistic Perspective, Pelica Press, 1966 L.A. Coser: Introduction to Sociology, HBJ, 1991

Supplementary literature

J.M. Henslin: Sociology: a down-to-earth approach, A&B, 1999

Monographic lecture

1. BASIC INFORMATION ON THE COURSE

Course name	Monographic Lecture (Petri Nets)		
Academic year	2022/2023		
Faculty	Faculty of Information Technology		
Field of study	Information Technology		
Education level	Second-cycle – postgraduate		
Education profile	Practical		
Specialty	-		

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

	Description of the learning outcomes for the course
No.	On completing the course, the student has the following KNOWLEDGE,
	SKILLS AND SOCIAL COMPETENCES
D. 14/04	Showing the algorithms, methods and tools used to develop solutions to computer problems
P_W01	in the lecture topic area
D 14/02	Discussing development trends and latest developments in IT applications in science and
P_W02	technology in the lecture topic area

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
10	-	-	-	-	-	1

3.3. Learning content (separately for each form of classes)

LECTURE	
No.	Learning content
Lec1	Presentation of selected algorithms, methods and tools for IT problem solving in Petri Nets
Lec2	Use of information technology methods, techniques and tools to solve problems in Petri Nets
Lec3	Identifying developmental trends and key new developments in computer applications for Petri Nets

3.4. Methods of verification of learning outcomes

		Form of classes within
Course outcome	Assessment method	which attaining the
		outcome is verified
P_W01 - W02	Colloquium/Open test	Lecture

3.5. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

0010010125		1	r	
Course outcome	For grade 2	For grade 3	For grade 4	For grade 5
course outcome	the student cannot	the student can	the student can	the student can
P_W01	show selected algorithms, methods, and tools used to develop solutions to IT issues in the lecture topic area	sufficiently demonstrate the selected algorithms, methods and tools used to develop practical solutions to IT problems in the area of lecture topics	present selected algorithms, methods, and tools for developing practical IT solutions for lecture topics	explain in detail the algorithms, methods and tools used to develop practical solutions to IT problems in the area of lecture topics
P_W02	discuss the trends and latest developments in IT applications in lecture topics	discuss basic trends and state-of-the-art developments in IT in lecture topics	discuss superior trends and latest developments in IT applications in lecture topics	discuss in detail the trends and latest developments in IT applications in lecture topics

3.6. Literature

Obligatory literature

D. Rene, A. Hassane, Discrete, continuous and hybrid Petri nets, Heidelberg : Springer Verlag, Berlin 2005 lub nowszeG. Claude, V. Rüdiger, Petri nets for systems engineering : a guide to modeling, verification, and applications,Heidelberg : Springer Verlag, Berlin 2003 lub nowsze

Supplementary literature

I. Koch, et al., Modeling in systems biology the petri net approach. London: Springer, 2011 lub nowsze

J. R. Silva and P. M. del Foyo, "Timed Petri Nets," 2012 lub nowsze

A. Gogolinska and W. Nowak, "Petri Nets Approach to Modeling of Immune System and Autism," in Artificial Immune Systems. vol. 7597, C. Coello Coello, et al., Eds., ed: Springer Berlin / Heidelberg, 2012 lub nowsze, pp. 86-99.

Monitoring and detecting security threats

1. BASIC IN ORMATION ON THE COORSE			
Course name	Monitoring and detecting security threats		
Academic year	2022/2023		
Faculty	Faculty of Information Technology		
Field of study	Information Technology		
Education level	Second-cycle – postgraduate		
Education profile	Practical		
Specialty	Cybersecurity		

1. BASIC INFORMATION ON THE COURSE

2. PREREQUISITES (resulting from the sequence of courses) Fundamentals of cybersecurity

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

	Description of the learning outcomes for the course
No.	On completing the course, the student has the following KNOWLEDGE,
	SKILLS AND SOCIAL COMPETENCES
P_W01	Be able to characterize threats and system monitoring techniques
P_U01	Applies system security monitoring tools
P_U02	Interprets information from monitoring and detection systems
P_U03	Be able to plan penetration tests
P_U04	Be able to prepare project and implementation documentation
P_U05	Test systems from a security perspective

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
-	-	-	30	20	-	4

3.3. Learning content (separately for each form of classes)

LABORATORY

No.	Learning content
Lab1	Log data processing in Linux
Lab2	Obtaining threat information
Lab3	Process monitoring on Windows and Linux
Lab4	Log Management Systems
Lab5	Intercept network traffic and monitor for attacks
Lab6	Performance testing of the Snort tool
Lab7	Isolation of threat actors using monitoring and threat detection tools

3.4. Methods of verification of learning outcomes

Course outcome	Assessment method	Form of classes within which attaining the outcome is verified
P_W01	Test	Laboratory
P_U01 - 02	Evaluation of completed laboratories	Laboratory
P_U03 - U05	Evaluation of project	Project

3.5. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE

OUTCOMES

Course outcome	For grade 2	For grade 3	For grade 4	For grade 5
Course outcome	the student cannot	the student can	the student can	the student can
P_W01	characterize the threats and techniques of systems monitoring	Correctly answers at least 50% of the questions on techniques of systems monitoring	Correctly answers at least 70% of the questions on techniques of systems monitoring	Correctly answers at least 85% of the questions on techniques of systems monitoring

P_U01	Use system security monitoring tools	Perform a basic set of labs on the use of systems security monitoring tools	Perform an entire set of labs on the use of systems security monitoring tools with some deficiencies or errors	Complete the entire set of labs on the use of systems security monitoring tools without error
P_U02	Interpret information from monitoring and detection systems	Interpret key information from monitoring and detection systems	Interpret key and more detailed information from monitoring and detection systems - less significant errors acceptable	Interpret key and more detailed information from monitoring and detection systems - without error
P_U03	Plan penetration tests	Plan basic penetration testing	Plan the detailed steps for implementing penetration testing	Plan detailed steps for implementing more advanced penetration testing
P_U04	Prepare project and implementation documentation	Prepare basic documentation of project and implementation	Prepare detailed documentation of project and implementation	Prepare detailed documentation of project and implementation with appendices
P_U05	Test systems from a security perspective	Complete the test plan sufficiently	Complete the test plan to a good level	Complete the test plan completely

3.6. Literature

Obligatory literature

Materiały Akademii Cisco: CCNA CyberOps http://cisco.netacad.net

Glen D. Singh , Learn Kali Linux 2019: Perform powerful penetration testing using Kali Linux, Metasploit, Nessus, Nmap, and Wireshark, Packt Publishing , Nov 14, 2019

Network security bible / Eric Cole, Ronald Krutz, James W. Conley. - 2nd ed. - Indianapolis, IN : Wiley Pub., Inc., cop. 2009.

Supplementary literature

Cryptography and Network Security: Principles and Practice by William Stallings (13 Jun 2013)

CompTIA Security + Review Guide: Exam SY0-401 by James M. Stewart (1 Jul 2014)

Allen Harper, Daniel Regalado, Gray Hat Hacking: The Ethical Hacker's Handbook, Fifth Edition , McGraw-Hill Education, Jun 8, 2018

Cybersecurity essentials

	Cybersecurity Essentials (MA degree - 2 ECTS)
Lecture	 Cyberspace - security actors, cybercriminals, security professionals , impact of threats on individuals, business, institutions; Security models and standards. Basic components: confidentiality, integrity, availability; Threats and vulnerabilities - overview; Ensuring confidentiality - cryptography. Techniques, tools, protocols; Ensuring integrity. Integrity control methods, digital signatures, certificates. Integrity in databases; High availability and reliability. Methods for increasing reliability, incident response, disaster recovery; Securing devices and systems. Securing servers, networks. Physical security.
Laboratory	 Identification of threats using professional bases. Preparing an environment based on virtualization; Applying methods of authentication, authorization and accounting in operating systems; Detecting basic threats in an operating system; Encryption and password cracking; Examining digital signatures. Configuring secure remote access; Securing the operating system.

Introduction to network technologies

1. BASIC INFORMATION ON THE COURSE			
Course name	Introduction to network technologies		
Academic year	2022/2023		
Faculty	Faculty of Information Technology		
Field of study	Information Technology		
Education level	Second-cycle – postgraduate		
Education profile	Practical		
Specialty	Cybersecurity		

1. BASIC INFORMATION ON THE COURSE

2. PREREQUISITES (resulting from the sequence of courses)

3. LEARNING OUTCOMES AND THE METHOD OF CARRYING OUT ACTIVITIES

3.1. Course learning outcomes - knowledge, skills and social competences,

	Description of the learning outcomes for the course
No.	On completing the course, the student has the following KNOWLEDGE, SKILLS AND SOCIAL COMPETENCES
P_W01	Evaluate the suitability of models, topologies, protocols and technologies for specific applications
P_W02	Analyze solutions in terms of computer network and services operating conditions.
P_W03	Characterize a systematic approach to computer network design considering business requirements and technical constraints.
P_U01	Develop documentation for the project task
P_U02	Prepare and conduct an experiment using laboratory equipment and software
P_U03	Prepare a study of the results of the experiment

3.2. Forms of classes and number of hours and ECTS credits

Lec	Tutorial	RC	Lab	Р	eL	ECTS
-	-	-	30	-	-	2

3.3. Learning content (separately for each form of classes)

LABORATORY

No.	Learning content
Lab1	Analysis of communication methods – connection oriented/connectionless and their applications
Lab2	Services in networks and the application, presentation, and session layers of the OSI model.
Lab3	Analysis of TCP and UDP protocol. Evaluation of the usefulness of both protocols.
Lab4	Comparison of IPv4 and IPv6 protocols. Analysis of the pros and cons of the protocols.
Lab5	Study of data link layer protocols and multi-access methods using Ethernet, wi-fi, ppp as examples
Lab6	Investigation of transmission channels and analysis of their properties
Lab7	Application of remote access in business
Lab8	Analysis of security solutions at different layers of the OSI model.
Lab9	Testing protocols for secure transmission
Lab10	Methodology of computer network design
Lab11	Business requirements analysis for a planned or upgraded computer network
Lab12	Formulating technical requirements for a computer network
Lab13	Planning of logical topology, addressing, selection of communication security solutions.
Lab14	Selection of network technology (Ethernet, Wi-Fi), devices and media types. Design of physical network topology and deployment of cabling and devices.
Lab15	Optimize computer network operations and services

3.4. Methods of verification of learning outcomes

		Form of classes within
Course outcome	Assessment method	which attaining the
		outcome is verified

P_W01-03	According to the stand took	Laboratory
P U01-03	Assessment, practical task	Laboratory

3.5. CRITERIA FOR GRADING THE LEVEL OF ACHIEVEMENT OF COURSE OUTCOMES

Course outcome	For grade 2	For grade 3	For grade 4	For grade 5
	the student cannot	the student can	the student can	the student can
P_W01	Evaluate the suitability of models, topologies, protocols and technologies for specific applications	Evaluate the suitability of key models, topologies, protocols and technologies for typical applications	Evaluate the suitability of various models, topologies, protocols and technologies in typical applications	Evaluate the suitability of various models, topologies, protocols, and technologies for a variety of applications
P_W02	Analyze solutions in terms of computer network operating conditions and services.	Analyze simple solutions in terms of computer network operating conditions and services.	Analyze more complex solutions in terms of computer network operating conditions and services.	Analyze more complex solutions in terms of computer network operating conditions and services in a degree that demonstrates independent study of the topic.
P_W03	Characterize a systematic approach to computer network design considering business requirements and technical constraints.	Characterize a main assumptions of systematic approach to computer network design considering business requirements and technical constraints.	Characterize a systematic approach to computer network design considering business requirements and technical constraints.	Characterize, giving various example, a systematic approach to computer network design considering business requirements and technical constraints.
P_U01	Prepare documentation for the project task	Document a design task based on template solutions	Develop documentation for a project task using their own ingenuity	Develop documentation of a design task that closely represents the actual design steps
P_U02	Prepare or conduct an experiment using laboratory equipment and software	Prepare and conduct a simple experiment using laboratory equipment and software	Prepare and conduct a more complex experiment using laboratory equipment and software	Prepare and conduct a more complex experiment using laboratory equipment and software demonstrating independence and creativity.
P_U03	Prepare a study of the results of the experiment	Prepare the results of the experiment with simple tools and without making significant mistakes	Prepare a study of the results of an experiment using various tools and without making mistakes	Prepare a study of experimental results using a variety of tools and demonstrating independence and creativity

3.6. Literature

Obligatory literature					
Wendell Odom, CCNA 200-301 Official Cert Guide Library					
	_				

Cisco press, 2020 or Introduction to Networks course materials at http://netacad.com Oppenheimer P., Top-Down Network Design, Top-Down Network Design, Cisco Press; 3 edition (24 Aug 2010)

Supplementary literature

CompTIA Network+ Certification Premium Bundle: All-in-One Exam Guide, Seventh Edition with Online Access Code for Performance-Based Simulations, Video Training, and Practice Exams (Exam N10-007) 7th Edition, 2019 Wendell Odom, CCNA 200-301 Official Cert Guide Library 1st Edition, Cisco press, 2020 Wenliang Du , Computer & Internet Security: A Hands-on Approach 2nd Edition, Wenliang Du, 2019